Preliminaries Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

Econ 318 – Econometrics

Richard Schwinn

Spring 2015 MW 4:15-5:30 p.m. Section 1

Text: A Guide to Basic Econometric Techniques by Elia Kacapyr

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

In God we trust, all others bring data.

-William Edwards Deming (1900-1993)

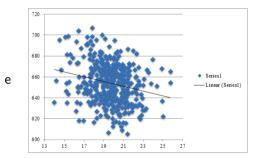
Fitting Lines

Notes 02

Preliminaries

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- This is data from the California public school system.
- The y-axis measures average test scores in classrooms for the range of student teacher ratios listed on the x-axis.
- What do you think explains this figure?



Simple Linear Regression

Notes 02 Preliminaries

Fitting Lines

Simple Linear Regression

- Linear Algebra
- Multiple Linear Regression Terminology
- References
- Supplemental

- We quantify the linear relationship between x and y by finding the equation of the line that "best" fits the data.
 - That equation will be written in the form

$$\hat{y} = a + bx.$$

- ► The variable *y* represents the value that was actually observed.
- The variable \hat{y} represents the value of y that is predicted by the model.

Simple Linear Regression

Notes 02

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

Many possible lines will look pretty good.

- ▶ To choose the best one, we need to measure how well a line fits the data.
- How do we measure how well a line fits the data?

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

Linear Algebra

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

- Suppose I have data on longevity, education, income, and average temperature in the region where subjects live.
 - How might I organize this information?
 - How can I test whether the data agree with my intuition regarding these values?

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology References

- Suppose I have data on longevity, education, income, and average temperature in the region where subjects live.
 - How might I organize this information?
 - How can I test whether the data agree with my intuition regarding these values?

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

- Suppose I have data on longevity, education, income, and average temperature in the region where subjects live.
 - How might I organize this information?
 - How can I test whether the data agree with my intuition regarding these values?

Notes 02
Preliminaries
Fitting Lines
Simple Linear Regression
Linear Algebra
Multiple
Linear Regression
Linear
Linear Regression
Linear Regression Terminology
Linear Regression Terminology References

- ► The following slides represent roughly 4 weeks of linear algebra compressed into one lecture. To learn more see Hefferon's excellent and free text.
- You don't need to memorize any definitions or operations. Just try to experience them in class.
- The important thing is to take away is the relationship between the observations in the dataframe:

 y_{n1} x_{n1} x_{n2} ... x_{nm} / and the data arranged into a into a linear model:

(y ₁₁)		(1)				$\left(\beta_0 \right)$
		1				
	=	1			*	
$\langle y_{n1} \rangle$)	$\left(1 \right)$)	$\left(\beta_m \right)$

Notes 02 Preliminaries Fitting Lines Simple Linear Regression Multiple Linear Regression Terminology

References

Supplemental

► The following slides represent roughly 4 weeks of linear algebra compressed into one lecture. To learn more see Hefferon's excellent and free text.

- You don't need to memorize any definitions or operations. Just try to experience them in class.
- The important thing is to take away is the relationship between the observations in the dataframe:

and the data arranged into a into a linear model:

(y_{11}		(1				β_0	
				1				β_1	
		=					*		
	y_{n1}))		1				β_m	

- The following slides represent roughly 4 weeks of linear algebra compressed into one lecture. To learn more see Hefferon's excellent and free text.
- You don't need to memorize any definitions or operations. Just try to experience them in class.
- The important thing is to take away is the relationship between the observations in the dataframe:

Multiple Linear Regression Terminology

Notes 02

Preliminaries

Fitting Lines

Simple Linear

Linear Algebra

Regression

References

Supplemental

 $\begin{pmatrix} y_{11} & x_{11} & x_{12} & \dots & x_{1m} \\ y_{21} & x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{n1} & x_{n1} & x_{n2} & \dots & x_{nm} \end{pmatrix}$ and the data arranged into a into a linear model: $\begin{pmatrix} y_{11} \\ y_{21} \\ \vdots \\ y_{n1} \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1m} \\ 1 & x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nm} \end{pmatrix} * \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_m \end{pmatrix}$

- The following slides represent roughly 4 weeks of linear algebra compressed into one lecture. To learn more see Hefferon's excellent and free text.
- You don't need to memorize any definitions or operations. Just try to experience them in class.
- The important thing is to take away is the relationship between the observations in the dataframe:

 $\begin{pmatrix} y_{11} & x_{11} & x_{12} & \dots & x_{1m} \\ y_{21} & x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \vdots & & \vdots \\ y_{n1} & x_{n1} & x_{n2} & \dots & x_{nm} \end{pmatrix}$ and the data arranged into a linear model:

				0				
/	(y_{11})		$\left(1 \right)$				β_0	
			1				β_1	
		_				*		
	y_{n1}))	$\left(1 \right)$)	β_m)

Notes 02

Preliminaries

Fitting Lines

Simple Linear

Linear Algebra

Terminology

Supplemental

Regression

Multiple Linear

Multiple Linear Regression Terminology References Supplemental

- ► The following slides represent roughly 4 weeks of linear algebra compressed into one lecture. To learn more see Hefferon's excellent and free text.
- You don't need to memorize any definitions or operations. Just try to experience them in class.
- The important thing is to take away is the relationship between the observations in the dataframe:

 $\begin{pmatrix} y_{11} & x_{11} & x_{12} & \dots & x_{1m} \\ y_{21} & x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \vdots & & \vdots \\ y_{n1} & x_{n1} & x_{n2} & \dots & x_{nm} \end{pmatrix}$ and the data arranged into a linear model:

			0					
$\langle y_{11} \rangle$		$\begin{pmatrix} 1 \end{pmatrix}$	x_{11}	x_{12}	 x_{1m}		β_0	
y_{21}		1	x_{21}	x_{22}	 x_{2m}		β_1	
:	=	÷	÷	÷	÷	*	÷	
$\left(\begin{array}{c} y_{n1} \end{array} \right)$		1	x_{n1}	x_{n2}	 x_{nm})	β_m	J

Matrices

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

• Matrix: A rectangular array of numbers, e.g., $A \in \mathbb{R}^{n \times m}$:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$$

Matrices

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

• Matrix: A rectangular array of numbers, e.g., $A \in \mathbb{R}^{n \times m}$:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$$

Vectors

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression

Linear Algebra

- Multiple Linear Regression Terminology References
- Supplemental

- Vector: A matrix consisting of only one column or one row, e.g., $x \in \mathbb{R}^n$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

 Optionally, underset numbers tell us the number of rows in a matrix followed by its number of columns. e.g. A m.n

Vectors

Notes 02 Preliminaries

- Fitting Lines
- Simple Linear Regression

Linear Algebra

- Multiple Linear Regression Terminology References
- Supplemental

- Vector: A matrix consisting of only one column or one row, e.g., $x \in \mathbb{R}^n$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

 Optionally, underset numbers tell us the number of rows in a matrix followed by its number of columns. e.g. A m.n

Vectors

Notes 02 Preliminaries

- **Fitting Lines**
- Simple Linear Regression

Linear Algebra

- Multiple Linear Regression Terminology
- References
- Supplemental

 \blacktriangleright Vector: A matrix consisting of only one column or one row, e.g., $x\in \mathbb{R}^n$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

 Optionally, underset numbers tell us the number of rows in a matrix followed by its number of columns. e.g. A m.n `

Matrix and Vector Addition

Matrix addition for a 2 by 2 matrices:

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression Terminology References Supplemental

$$\begin{array}{l}
A + B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix} (1) \\
= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix} (2)$$

► Now you try:

$$C = \begin{pmatrix} 9 & 1 \\ 2 & 3 \end{pmatrix}, D = \begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix} \rightarrow C + D = ?$$

/

 \mathbf{i}

/ .

Matrix and Vector Addition

Matrix addition for a 2 by 2 matrices:

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression Terminology References Supplemental

$$\begin{array}{l}
A + B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix} (1) \\
= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix} (2)$$

1

► Now you try:

$$C = \begin{pmatrix} 9 & 1 \\ 2 & 3 \end{pmatrix}, D = \begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix} \rightarrow C + D = ?$$

`

Matrix addition for a 2 by 2 matrices:

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression Terminology References

$$\begin{array}{l} A + B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix} (1) \\ = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix} (2)$$

$$C = \begin{pmatrix} 9 & 1 \\ 2 & 3 \end{pmatrix}, D = \begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix} \rightarrow C + D = ?$$

Vector addition for vectors of length 3:

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression Terminology References Supplemental

- $\begin{aligned} x + y &= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \qquad \qquad = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \qquad \qquad = \begin{pmatrix} 5 \\ 7 \\ 9 \end{pmatrix} \end{aligned}$
- ► Now you try:

$$\mathbf{v} = \begin{pmatrix} 9\\1\\2 \end{pmatrix}, \ w = \begin{pmatrix} 3\\4\\5 \end{pmatrix} \to v + w = ?$$

Econometrics

(3)

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression Terminology References
- Supplemental

Vector addition for vectors of length 3:

$$\begin{array}{l} x + y \\ _{3,1} + y \\ _{$$

$$= \begin{pmatrix} 9\\1\\2 \end{pmatrix}, w = \begin{pmatrix} 3\\4\\5 \end{pmatrix} \rightarrow v + w = ?$$

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression Terminology References
- Supplemental

Vector addition for vectors of length 3:

► Now you try:

$$v = \begin{pmatrix} 9\\1\\2 \end{pmatrix}, w = \begin{pmatrix} 3\\4\\5 \end{pmatrix} \rightarrow v + w = ?$$

Scalar Multiplication

Notes 02

- Preliminaries
- Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression Terminology References Supplemental

- A matrix with one row and one column is called a scalar. This is the same thing as the normal definition of a number that we're used to.
- When a matrix is multiplied by a scalar, every number in the array is multiplied by the scalar. Suppose c is a scalar→

$$c * A = c * \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} c * a_{11} & c * a_{12} \\ c * a_{21} & c * a_{22} \end{pmatrix}$$

► For example:

$$5 * A = c * \left(\begin{array}{cc} 1 & 2\\ 3 & 4 \end{array}\right) = \left(\begin{array}{cc} 5 & 10\\ 15 & 20 \end{array}\right)$$

Scalar Multiplication

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression Terminology References Supplemental

- A matrix with one row and one column is called a scalar. This is the same thing as the normal definition of a number that we're used to.
- ▶ When a matrix is multiplied by a scalar, every number in the array is multiplied by the scalar. Suppose c is a scalar→

$$c * A = c * \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} c * a_{11} & c * a_{12} \\ c * a_{21} & c * a_{22} \end{pmatrix}$$

► For example:

$$5 * A = c * \left(\begin{array}{cc} 1 & 2\\ 3 & 4 \end{array}\right) = \left(\begin{array}{cc} 5 & 10\\ 15 & 20 \end{array}\right)$$

Scalar Multiplication

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression

Linear Algebra

Multiple Linear Regression Terminology References Supplemental

- A matrix with one row and one column is called a scalar. This is the same thing as the normal definition of a number that we're used to.
- ▶ When a matrix is multiplied by a scalar, every number in the array is multiplied by the scalar. Suppose c is a scalar→

$$c * A = c * \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} c * a_{11} & c * a_{12} \\ c * a_{21} & c * a_{22} \end{pmatrix}$$

► For example:

$$5 * A = c * \left(\begin{array}{cc} 1 & 2\\ 3 & 4 \end{array}\right) = \left(\begin{array}{cc} 5 & 10\\ 15 & 20 \end{array}\right)$$

Matrix Multiplication

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression

Linear Algebra

- Multiple Linear Regression Terminology
- References
- Supplemental

- ▶ If $A_{m,n} \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, C = AB, then $C \in \mathbb{R}^{m \times p}$: $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$.
- Special cases: Matrix-vector product, inner product of two vectors. e.g., with $x, y \in \mathbb{R}^n$:

$$x^T y = \sum_{i=1}^n x_i y_i \in \mathbb{R}$$

► The product of two vectors is a scalar and equal to the length of the hypotenuse of the triangle formed by placing the vectors end-to-end.

$$v = \begin{pmatrix} 9\\1\\2 \end{pmatrix}, w = \begin{pmatrix} 3\\4\\5 \end{pmatrix} \to v^T w = (9)(3) + (1)(4) + (2)(5) = 41$$

Matrix Multiplication

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression

Linear Algebra

- Multiple Linear Regression
- Terminology
- References
- Supplemental

- ▶ If $A_{m,n} \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, C = AB, then $C \in \mathbb{R}^{m \times p}$: $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$.
- ▶ Special cases: Matrix-vector product, inner product of two vectors. e.g., with $x, y \in \mathbb{R}^n$:

$$x^T y = \sum_{i=1}^n x_i y_i \in \mathbb{R}$$

The product of two vectors is a scalar and equal to the length of the hypotenuse of the triangle formed by placing the vectors end-to-end.

$$v = \begin{pmatrix} 9\\1\\2 \end{pmatrix}, w = \begin{pmatrix} 3\\4\\5 \end{pmatrix} \to v^T w = (9)(3) + (1)(4) + (2)(5) = 41$$

Matrix Multiplication

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression

Linear Algebra

- Multiple Linear Regression
- Terminology
- References
- Supplemental

- ▶ If $A_{m,n} \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, C = AB, then $C \in \mathbb{R}^{m \times p}$: $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$.
- ▶ Special cases: Matrix-vector product, inner product of two vectors. e.g., with $x, y \in \mathbb{R}^n$:

$$x^T y = \sum_{i=1}^n x_i y_i \in \mathbb{R}$$

The product of two vectors is a scalar and equal to the length of the hypotenuse of the triangle formed by placing the vectors end-to-end.

$$v = \begin{pmatrix} 9\\1\\2 \end{pmatrix}, w = \begin{pmatrix} 3\\4\\5 \end{pmatrix} \to v^T w = (9)(3) + (1)(4) + (2)(5) = 41$$

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

Transposing a matrix swaps the row and column coordinates of each element of a matrix.

- ▶ Transpose: $A \in \mathbb{R}^{m \times n}$, then $A^T \in \mathbb{R}^{n \times m}$: $(A^T)_{ij} = A_{ji}$
- Properties:

$$(A^T)^T = A$$

$$\cdot \ (AB)^T = B^T A^T$$

$$(A+B)^T = A^T + B^T$$

The trace is just the sum of the diagonal of a matrix.

▶ Trace:
$$A \in \mathbb{R}^{n \times n}$$
, then: $tr(A) = \sum_{i=1}^{n} A_{ii}$

$$\blacktriangleright tr(A) = tr(A^T)$$

$$\bullet tr(A+B) = tr(A) + tr(B)$$

- $\blacktriangleright tr(\lambda A) = \lambda tr(A)$
- If AB is a square matrix, tr(AB) = tr(BA)

Econometrics

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regressior

Terminology

References

Supplemental

Transposing a matrix swaps the row and column coordinates of each element of a matrix.

- ▶ Transpose: $A \in \mathbb{R}^{m \times n}$, then $A^T \in \mathbb{R}^{n \times m}$: $(A^T)_{ij} = A_{ji}$
- Properties:

h

$$(A^T)^T = A$$

$$(AB)^T = B^T A^T$$

$$\bullet \ (A+B)^T = A^T + B^T$$

The trace is just the sum of the diagonal of a matrix.

- \blacktriangleright Trace: $A \in \mathbb{R}^{n \times n}$, then: $tr(A) = \sum_{i=1}^{n} A_{ii}$
 - Properties:
 - $\blacktriangleright \ tr(A) = tr(A^T)$
 - $\blacktriangleright tr(A+B) = tr(A) + tr(B)$
 - $\blacktriangleright tr(\lambda A) = \lambda tr(A)$
 - $\blacktriangleright \ \ \, {\rm If} \ \, AB \ \, {\rm is \ a \ \, square \ matrix,} \ tr(AB)=tr(BA)$

Notes 02

Preliminaries Fitting Lines

Simple Linear

Regression

Linear Algebra

Multiple Linear Regressior

Terminology

References

Supplemental

Transposing a matrix swaps the row and column coordinates of each element of a matrix.

- ▶ Transpose: $A \in \mathbb{R}^{m \times n}$, then $A^T \in \mathbb{R}^{n \times m}$: $(A^T)_{ij} = A_{ji}$
- Properties: $(A^T)^T$

$$(A^T)^T = A$$

$$(AB)^T = B^T A^T$$

$$\bullet \ (A+B)^T = A^T + B^T$$

The trace is just the sum of the diagonal of a matrix.

▶ Trace: $A \in \mathbb{R}^{n \times n}$, then: $tr(A) = \sum_{i=1}^{n} A_{ii}$

Properties:

- $\blacktriangleright \ tr(A) = tr(A^T)$
- $\blacktriangleright tr(A+B) = tr(A) + tr(B)$
- $\blacktriangleright tr(\lambda A) = \lambda tr(A)$
- If AB is a square matrix, tr(AB) = tr(BA)

Econometrics

Notes 02

Preliminaries Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regressior

Terminology

References

Supplemental

Transposing a matrix swaps the row and column coordinates of each element of a matrix.

- ▶ Transpose: $A \in \mathbb{R}^{m \times n}$, then $A^T \in \mathbb{R}^{n \times m}$: $(A^T)_{ij} = A_{ji}$
- Properties:

$$(A^T)^T = A$$

$$(AB)^T = B^T A^T$$

$$\bullet \ (A+B)^T = A^T + B^T$$

The trace is just the sum of the diagonal of a matrix.

- Trace: $A \in \mathbb{R}^{n \times n}$, then: $tr(A) = \sum_{i=1}^{n} A_{ii}$
- Properties:

•
$$tr(A) = tr(A^T)$$

•
$$tr(A+B) = tr(A) + tr(B)$$

•
$$tr(\lambda A) = \lambda tr(A)$$

• If AB is a square matrix, tr(AB) = tr(BA)

Properties of Matrix Multiplication

Notes 02

Preliminaries

- Fitting Lines
- Simple Linear Regression

Linear Algebra

- Multiple Linear Regression Terminology References
- Supplemental

- Associative: (AB)C = A(BC)
- Distributive: A(B+C) = AB + AC
- ▶ Non-commutative: $AB \neq BA$

Properties of Matrix Multiplication

Notes 02

Preliminaries

- Fitting Lines
- Simple Linear Regression

Linear Algebra

- Multiple Linear Regression Terminology
- References
- Supplemental

- Associative: (AB)C = A(BC)
- Distributive: A(B+C) = AB + AC
- Non-commutative: $AB \neq BA$

Properties of Matrix Multiplication

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

- Multiple Linear Regression
- Terminology
- References
- Supplemental

- Associative: (AB)C = A(BC)
- Distributive: A(B+C) = AB + AC
- Non-commutative: $AB \neq BA$

Special types of matrices

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

• Identity matrix:
$$I = I_n \in \mathbb{R}^{n \times n}$$
:

$$I_{ij} = \begin{cases} 1 & i=j, \\ 0 & \text{otherwise.} \end{cases}$$

$$\blacktriangleright \quad \forall A \in \mathbb{R}^{m \times n} \colon AI_n = I_m A = A$$

Symmetric matrices: $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$.

Special types of matrices

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

• Identity matrix:
$$I = I_n \in \mathbb{R}^{n \times n}$$
:

$$I_{ij} = \begin{cases} 1 & i=j, \\ 0 & \text{otherwise.} \end{cases}$$

$$\blacktriangleright \quad \forall A \in \mathbb{R}^{m \times n} \colon AI_n = I_m A = A$$

Symmetric matrices: $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$.

At this point, the arrangement of the data into a model should be clearer to you.

Preliminaries

Notes 02

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

• Begin with the data: n observations, 1 response, and m variables.

$$\left(\begin{array}{cccccc} y_{11} & x_{11} & x_{12} & \dots & x_{1m} \\ y_{21} & x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \vdots & & \vdots \\ y_{n1} & x_{n1} & x_{n2} & \dots & x_{nm} \end{array}\right)$$

Next it's arranged into a into a model:

At this point, the arrangement of the data into a model should be clearer to you.

Preliminaries

Notes 02

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

• Begin with the data: n observations, 1 response, and m variables.

$$\left(\begin{array}{ccccc} y_{11} & x_{11} & x_{12} & \dots & x_{1m} \\ y_{21} & x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \vdots & & \vdots \\ y_{n1} & x_{n1} & x_{n2} & \dots & x_{nm} \end{array}\right)$$

Next it's arranged into a into a model:

$$\begin{pmatrix} y_{11} \\ y_{21} \\ \vdots \\ y_{n1} \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1m} \\ 1 & x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nm} \end{pmatrix} * \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_m \end{pmatrix}$$

	After	the	data	is	arranged	into	а	into	а	model:
--	-------	-----	------	----	----------	------	---	------	---	--------

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology References Supplemental

- $\begin{pmatrix} y_{11} \\ y_{21} \\ \vdots \\ y_{n1} \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1m} \\ 1 & x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nm} \end{pmatrix} * \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_m \end{pmatrix}$ (5) $\begin{array}{c} Y_{n,1} = X \\ n,mm,1 \end{array}$
- Perform matrix multiplication and note that every entry in the first column of the X matrix is multiplied by β₀, every entry in the second column (i.e. those that correspond to the first x variable) by β₁, and so on:

$$\begin{pmatrix} y_{11} \\ y_{21} \\ \vdots \\ y_{n1} \end{pmatrix} = \begin{pmatrix} \beta_0 & \beta_1 x_{11} & \dots & \beta_m x_{1m} \\ \beta_0 & \beta_1 x_{21} & \dots & \beta_m x_{2m} \\ \vdots & \vdots & & \vdots \\ \beta_0 & \beta_1 x_{n1} & \dots & \beta_m x_{nm} \end{pmatrix}$$

After the data is arranged into a into a model:

Notes 02

Fitting Lines

Simple Linear Regression

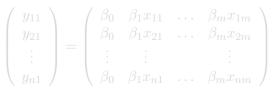
Linear Algebra

Multiple Linear Regression

Terminology Supplemental

 $Y_{n,1} = X_{n,mm,1}B$ Perform matrix multiplication and note that every entry in the first column of the X matrix is multiplied by β_0 , every entry in the second column (i.e. those that correspond to the first x variable) by β_1 , and so on:

 $\begin{pmatrix} y_{11} \\ y_{21} \\ \vdots \\ y_{n1} \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1m} \\ 1 & x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nm} \end{pmatrix} * \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_m \end{pmatrix}$



Notes 02 (NEIU Spring 2015, Section 1)

Econometrics

(5)

(6)

After the data is arranged into a into a model:

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology References

Supplemental

$$\begin{pmatrix} y_{11} \\ y_{21} \\ \vdots \\ y_{n1} \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1m} \\ 1 & x_{21} & x_{22} & \dots & x_{2m} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nm} \end{pmatrix} * \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_m \end{pmatrix}$$
(5)
$$\begin{array}{c} Y_{n,1} = X \\ n,mm,1 \end{pmatrix}$$
(6)

Perform matrix multiplication and note that every entry in the first column of the X matrix is multiplied by β₀, every entry in the second column (i.e. those that correspond to the first x variable) by β₁, and so on:

$$\begin{pmatrix} y_{11} \\ y_{21} \\ \vdots \\ y_{n1} \end{pmatrix} = \begin{pmatrix} \beta_0 & \beta_1 x_{11} & \dots & \beta_m x_{1m} \\ \beta_0 & \beta_1 x_{21} & \dots & \beta_m x_{2m} \\ \vdots & \vdots & & \vdots \\ \beta_0 & \beta_1 x_{n1} & \dots & \beta_m x_{nm} \end{pmatrix}$$

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

Let
$$A = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}$$
 and $A^{-1} = \begin{pmatrix} -2 & 3 \\ 3 & -4 \end{pmatrix}$ and consider AA^{-1}
$$AA^{-1} = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} -2 & 3 \\ 3 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

Let
$$A = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}$$
 and $A^{-1} = \begin{pmatrix} -2 & 3 \\ 3 & -4 \end{pmatrix}$ and consider AA^{-1}
$$AA^{-1} = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} -2 & 3 \\ 3 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Notes 02

Preliminaries

- Fitting Lines
- Simple Linear Regression

Linear Algebra

- Multiple Linear Regression
- Terminology
- References
- Supplemental

- If $A \in \mathbb{R}^{n \times n}$, then the inverse of A, denoted A^{-1} is the matrix that: $AA^{-1} = A^{-1}A = I$. Recall that IA = A for all conformable A.
- Properties:

$$(A^{-1})^{-1} = A$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

- $\bullet \ (A^{-1})^T = (A^T)^{-1}$
- ▶ There is a problem in solving Y = XB. We can't simply multiply the inverse to both sides $(X^{-1}Y = X^{-1}XB)$ to get B.
 - Can anyone tell me why? For bonus points? There is a hint on this page.

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

- Multiple Linear Regression
- Terminology
- References
- Supplemental

- If $A \in \mathbb{R}^{n \times n}$, then the inverse of A, denoted A^{-1} is the matrix that: $AA^{-1} = A^{-1}A = I$. Recall that IA = A for all conformable A.
 - Properties:
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(A^{-1})^T = (A^T)^{-1}$
- ▶ There is a problem in solving Y = XB. We can't simply multiply the inverse to both sides $(X^{-1}Y = X^{-1}XB)$ to get B.
 - Can anyone tell me why? For bonus points? There is a hint on this page.

Notes 02

Fitting Lines

Simple Linear Regression

Linear Algebra

- Multiple Linear Regression
- Terminology
- References
- Supplemental

- If $A \in \mathbb{R}^{n \times n}$, then the inverse of A, denoted A^{-1} is the matrix that: $AA^{-1} = A^{-1}A = I$. Recall that IA = A for all conformable A.
 - Properties:

Þ

$$(A^{-1})^{-1} = A$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

- $(A^{-1})^T = (A^T)^{-1}$
- ► There is a problem in solving Y = XB. We can't simply multiply the inverse to both sides (X⁻¹Y = X⁻¹XB) to get B.
 - Can anyone tell me why? For bonus points? There is a hint on this page.

Notes 02

Preliminaries

- Fitting Lines
- Simple Linear Regression

Linear Algebra

- Multiple Linear Regression
- Terminology
- References
- Supplemental

- If $A \in \mathbb{R}^{n \times n}$, then the inverse of A, denoted A^{-1} is the matrix that: $AA^{-1} = A^{-1}A = I$. Recall that IA = A for all conformable A.
 - Properties:

Þ

$$(A^{-1})^{-1} = A$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

- $(A^{-1})^T = (A^T)^{-1}$
- ► There is a problem in solving Y = XB. We can't simply multiply the inverse to both sides (X⁻¹Y = X⁻¹XB) to get B.
 - Can anyone tell me why? For bonus points? There is a hint on this page.

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

- Multiple Linear Regression
- Terminology
- References
- Supplemental

- If $A \in \mathbb{R}^{n \times n}$, then the inverse of A, denoted A^{-1} is the matrix that: $AA^{-1} = A^{-1}A = I$. Recall that IA = A for all conformable A.
 - Properties:

$$(A^{-1})^{-1} = A$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

- $(A^{-1})^T = (A^T)^{-1}$
- ► There is a problem in solving Y = XB. We can't simply multiply the inverse to both sides (X⁻¹Y = X⁻¹XB) to get B.
 - Can anyone tell me why? For bonus points? There is a hint on this page.

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology References Supplemental ► The problem is that X is not a square matrix. This means that it does not have an equal number of rows and columns, so it cannot be inverted.

The solution is a simple trick:

▶ When you multiply a matrix by its transpose, the result is square.

So we multiply both sides of the equation by the transpose of X before inverting.

$$X^T Y = X^T X B \tag{7}$$

$$(X^T X)^{-1} X^T Y = (X^T X)^{-1} (X^T X) B$$
(8)

$$(X^{T}X)^{-1}X^{T}Y = IB = B$$
(9)

- ► The best fitting fitting hyper-plane (or simply line, in the case of one x-variable, i.e. m=1, simple linear regression) is based on the parameters estimated using only X and Y of this equation: \$\heta\$ = (X^TX)⁻¹X^TY\$.
- ▶ Now you've learned the most ubiquitous technique in academic research.

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

- The problem is that X is not a square matrix. This means that it does not have an equal number of rows and columns, so it cannot be inverted.
- ► The solution is a simple trick:
 - ▶ When you multiply a matrix by its transpose, the result is square.
 - So we multiply both sides of the equation by the transpose of X before inverting.

$$X^T Y = X^T X B \tag{7}$$

$$(X^T X)^{-1} X^T Y = (X^T X)^{-1} (X^T X) B$$
(8)

$$(X^T X)^{-1} X^T Y = IB = B (9)$$

- ► The best fitting fitting hyper-plane (or simply line, in the case of one x-variable, i.e. m=1, simple linear regression) is based on the parameters estimated using only X and Y of this equation: B̂ = (X^TX)⁻¹X^TY.
- ▶ Now you've learned the most ubiquitous technique in academic research.

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology References Supplemental

The problem is that X is not a square matrix. This means that it does not have an equal number of rows and columns, so it cannot be inverted.

- ► The solution is a simple trick:
 - When you multiply a matrix by its transpose, the result is square.
 - So we multiply both sides of the equation by the transpose of X before inverting.

$$X^T Y = X^T X B \tag{7}$$

$$(X^{T}X)^{-1}X^{T}Y = (X^{T}X)^{-1}(X^{T}X)B$$
(8)

$$(X^{T}X)^{-1}X^{T}Y = IB = B$$
(9)

- ► The best fitting fitting hyper-plane (or simply line, in the case of one x-variable, i.e. m=1, simple linear regression) is based on the parameters estimated using only X and Y of this equation: B̂ = (X^TX)⁻¹X^TY.
- ▶ Now you've learned the most ubiquitous technique in academic research.

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra

Multiple Linear Regression

- The problem is that X is not a square matrix. This means that it does not have an equal number of rows and columns, so it cannot be inverted.
- ► The solution is a simple trick:
 - When you multiply a matrix by its transpose, the result is square.
 - ▶ So we multiply both sides of the equation by the transpose of X before inverting.

$$X^T Y = X^T X B \tag{7}$$

$$(X^T X)^{-1} X^T Y = (X^T X)^{-1} (X^T X) B$$
(8)

$$(X^T X)^{-1} X^T Y = IB = B$$
(9)

- ► The best fitting fitting hyper-plane (or simply line, in the case of one x-variable, i.e. m=1, simple linear regression) is based on the parameters estimated using only X and Y of this equation: B̂ = (X^TX)⁻¹X^TY.
- ▶ Now you've learned the most ubiquitous technique in academic research.

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra

Multiple Linear Regression

- The problem is that X is not a square matrix. This means that it does not have an equal number of rows and columns, so it cannot be inverted.
- ► The solution is a simple trick:
 - When you multiply a matrix by its transpose, the result is square.
 - ▶ So we multiply both sides of the equation by the transpose of X before inverting.

$$X^T Y = X^T X B \tag{7}$$

$$(X^T X)^{-1} X^T Y = (X^T X)^{-1} (X^T X) B$$
(8)

$$(X^T X)^{-1} X^T Y = IB = B$$
(9)

- ► The best fitting fitting hyper-plane (or simply line, in the case of one x-variable, i.e. m=1, simple linear regression) is based on the parameters estimated using only X and Y of this equation: B̂ = (X^TX)⁻¹X^TY.
- ▶ Now you've learned the most ubiquitous technique in academic research.

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra

Multiple Linear Regression

- The problem is that X is not a square matrix. This means that it does not have an equal number of rows and columns, so it cannot be inverted.
- ► The solution is a simple trick:
 - When you multiply a matrix by its transpose, the result is square.
 - ▶ So we multiply both sides of the equation by the transpose of X before inverting.

$$X^T Y = X^T X B \tag{7}$$

$$(X^T X)^{-1} X^T Y = (X^T X)^{-1} (X^T X) B$$
(8)

$$(X^T X)^{-1} X^T Y = IB = B$$
(9)

- ► The best fitting fitting hyper-plane (or simply line, in the case of one x-variable, i.e. m=1, simple linear regression) is based on the parameters estimated using only X and Y of this equation: B̂ = (X^TX)⁻¹X^TY.
- ▶ Now you've learned the most ubiquitous technique in academic research.

Terminology 01

Notes 02

- Preliminaries Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression

Terminology

References Supplemental

- 1. **Dependent variable (Y-variable)** In an econometric model, this variable appears to the left of the equality sign. It is affected by the independent variable.
- 2. **Econometric model** (structural equation or regression equation) A mathematical expression that captures the essence of the cause and–effect relationship between two variables.
- 3. **Error term (residual or disturbance)** This variable is attached to the end of an econometric model. It captures the difference between the observed value of the Y-variable and the value predicted by the econometric model.
- 4. **Independent variable (X-variable)** In an econometric model, this variable appears to the right of the equality sign. It is affects by the dependent variable.
- 5. **Normal equation** An equation that comes up in the derivation of the formulas for the ordinary least–squares estimators.

Terminology 01

Notes 02

- Preliminaries Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression

Terminology

References Supplemental

- 1. **Dependent variable (Y-variable)** In an econometric model, this variable appears to the left of the equality sign. It is affected by the independent variable.
- 2. **Econometric model** (structural equation or regression equation) A mathematical expression that captures the essence of the cause and–effect relationship between two variables.
- 3. Error term (residual or disturbance) This variable is attached to the end of an econometric model. It captures the difference between the observed value of the Y-variable and the value predicted by the econometric model.
- 4. **Independent variable (X-variable)** In an econometric model, this variable appears to the right of the equality sign. It is affects by the dependent variable.
- 5. **Normal equation** An equation that comes up in the derivation of the formulas for the ordinary least–squares estimators.

Terminology 01

- Preliminaries Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References Supplemental

- 1. **Dependent variable (Y-variable)** In an econometric model, this variable appears to the left of the equality sign. It is affected by the independent variable.
- 2. **Econometric model** (structural equation or regression equation) A mathematical expression that captures the essence of the cause and–effect relationship between two variables.
- 3. Error term (residual or disturbance) This variable is attached to the end of an econometric model. It captures the difference between the observed value of the Y-variable and the value predicted by the econometric model.
- 4. **Independent variable (X-variable)** In an econometric model, this variable appears to the right of the equality sign. It is affects by the dependent variable.
- 5. **Normal equation** An equation that comes up in the derivation of the formulas for the ordinary least–squares estimators.

Terminology 01

- Preliminaries Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References Supplemental

- 1. **Dependent variable (Y-variable)** In an econometric model, this variable appears to the left of the equality sign. It is affected by the independent variable.
- 2. **Econometric model** (structural equation or regression equation) A mathematical expression that captures the essence of the cause and–effect relationship between two variables.
- 3. Error term (residual or disturbance) This variable is attached to the end of an econometric model. It captures the difference between the observed value of the Y-variable and the value predicted by the econometric model.
- 4. **Independent variable (X-variable)** In an econometric model, this variable appears to the right of the equality sign. It is affects by the dependent variable.
- 5. **Normal equation** An equation that comes up in the derivation of the formulas for the ordinary least–squares estimators.

Terminology 01

- Preliminaries Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References Supplemental

- 1. **Dependent variable (Y-variable)** In an econometric model, this variable appears to the left of the equality sign. It is affected by the independent variable.
- 2. **Econometric model** (structural equation or regression equation) A mathematical expression that captures the essence of the cause and–effect relationship between two variables.
- 3. Error term (residual or disturbance) This variable is attached to the end of an econometric model. It captures the difference between the observed value of the Y-variable and the value predicted by the econometric model.
- 4. **Independent variable (X-variable)** In an econometric model, this variable appears to the right of the equality sign. It is affects by the dependent variable.
- 5. **Normal equation** An equation that comes up in the derivation of the formulas for the ordinary least–squares estimators.

- Notes 02 Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References Supplemental

- 1. Ordinary least-squares A technique for estimating the structural parameters of an econometric model. This technique minimizes Σe_i^2 (
- 2. **Population regression function** An econometric model estimated with error-free data that includes the entire population of interest.
- 3. **Sample regression function** An econometric model estimated from sample data.
- 4. **Stochastic variable** A variable that can take on different values depending on the sample data. $\hat{\beta}_0$ and $\hat{\beta}_1$ are stochastic variables, as are the e_i 's.
- 5. Structural parameter In an econometric model, $\widehat{beta_0}$ and $\widehat{\beta}_1$ are the structural parameters.

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References Supplemental

- 1. Ordinary least-squares A technique for estimating the structural parameters of an econometric model. This technique minimizes Σe_i^2 (
- 2. **Population regression function** An econometric model estimated with error-free data that includes the entire population of interest.
 - 3. **Sample regression function** An econometric model estimated from sample data.
- 4. Stochastic variable A variable that can take on different values depending on the sample data. $\hat{\beta}_0$ and $\hat{\beta}_1$ are stochastic variables, as are the e_i 's.
- 5. **Structural parameter** In an econometric model, $\widehat{beta_0}$ and $\widehat{\beta}_1$ are the structural parameters.

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References Supplemental

- 1. Ordinary least-squares A technique for estimating the structural parameters of an econometric model. This technique minimizes Σe_i^2 (
- 2. **Population regression function** An econometric model estimated with error–free data that includes the entire population of interest.
- 3. Sample regression function An econometric model estimated from sample data.
- 4. **Stochastic variable** A variable that can take on different values depending on the sample data. $\hat{\beta}_0$ and $\hat{\beta}_1$ are stochastic variables, as are the e_i 's.
- 5. Structural parameter In an econometric model, $\widehat{beta_0}$ and $\widehat{\beta}_1$ are the structural parameters.

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References Supplemental

- 1. Ordinary least-squares A technique for estimating the structural parameters of an econometric model. This technique minimizes Σe_i^2 (
- 2. **Population regression function** An econometric model estimated with error-free data that includes the entire population of interest.
- 3. **Sample regression function** An econometric model estimated from sample data.
- 4. Stochastic variable A variable that can take on different values depending on the sample data. $\hat{\beta}_0$ and $\hat{\beta}_1$ are stochastic variables, as are the e_i 's.
- 5. **Structural parameter** In an econometric model, $beta_0$ and $\hat{\beta}_1$ are the structural parameters.

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References Supplemental

- 1. Ordinary least-squares A technique for estimating the structural parameters of an econometric model. This technique minimizes Σe_i^2 (
- 2. **Population regression function** An econometric model estimated with error-free data that includes the entire population of interest.
- 3. **Sample regression function** An econometric model estimated from sample data.
- 4. Stochastic variable A variable that can take on different values depending on the sample data. $\hat{\beta}_0$ and $\hat{\beta}_1$ are stochastic variables, as are the e_i 's.
- 5. Structural parameter In an econometric model, $\widehat{beta_0}$ and $\widehat{\beta}_1$ are the structural parameters.

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

- ► A Guide to Basic Econometric Techniques by Elia Kacapyr
- ► To learn more about linear algebra see Hefferon's excellent and free text.
- Anonymous MIT notes on linear algebra (add link here).

Linear Independence and Rank

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

- A set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent if $\nexists \{\alpha_1, \ldots, \alpha_n\}$: $\sum_{i=1}^n \alpha_i x_i = 0.$
 - To understand this point think of each vector as a line segment pointing in a particular direction.
 - ▶ The note above says that if you place the vectors end-to-end, while maintaining their directions, that you can't arrange them in a way that they meet any of the other vectors, even if you're allowed to stretch them,
- ▶ Rank: $A \in \mathbb{R}^{m \times n}$, then rank(A) is the maximum number of linearly independent columns (or equivalently, rows)
- Properties:
 - $\blacktriangleright \ rank(A) \le \min\{m, n\}$
 - $\blacktriangleright \ rank(A) = rank(A^T)$
 - $rank(AB) \le \min\{rank(A), rank(B)\}$
 - $\blacktriangleright rank(A+B) \le rank(A) + rank(B)$

Linear Independence and Rank

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- A set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent if $\nexists\{\alpha_1, \ldots, \alpha_n\}$: $\sum_{i=1}^n \alpha_i x_i = 0.$
 - To understand this point think of each vector as a line segment pointing in a particular direction.
 - The note above says that if you place the vectors end-to-end, while maintaining their directions, that you can't arrange them in a way that they meet any of the other vectors, even if you're allowed to stretch them,
- ▶ Rank: $A \in \mathbb{R}^{m \times n}$, then rank(A) is the maximum number of linearly independent columns (or equivalently, rows)
- Properties:
 - $\blacktriangleright \ rank(A) \le \min\{m, n\}$
 - $\blacktriangleright \ rank(A) = rank(A^T)$
 - $\blacktriangleright rank(AB) \le \min\{rank(A), rank(B)\}$
 - $rank(A+B) \le rank(A) + rank(B)$

Linear Independence and Rank

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regressior
- Terminology
- References
- Supplemental

- A set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent if $\nexists \{\alpha_1, \ldots, \alpha_n\}$: $\sum_{i=1}^n \alpha_i x_i = 0.$
 - To understand this point think of each vector as a line segment pointing in a particular direction.
 - The note above says that if you place the vectors end-to-end, while maintaining their directions, that you can't arrange them in a way that they meet any of the other vectors, even if you're allowed to stretch them,
- ► Rank: A ∈ ℝ^{m×n}, then rank(A) is the maximum number of linearly independent columns (or equivalently, rows)
- Properties:
 - $\blacktriangleright \ rank(A) \le \min\{m, n\}$
 - $\blacktriangleright \ rank(A) = rank(A^T)$
 - $\blacktriangleright rank(AB) \le \min\{rank(A), rank(B)\}$
 - $rank(A+B) \le rank(A) + rank(B)$

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- A set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent if $\nexists \{\alpha_1, \ldots, \alpha_n\}$: $\sum_{i=1}^n \alpha_i x_i = 0.$
 - To understand this point think of each vector as a line segment pointing in a particular direction.
 - The note above says that if you place the vectors end-to-end, while maintaining their directions, that you can't arrange them in a way that they meet any of the other vectors, even if you're allowed to stretch them,
- ▶ Rank: $A \in \mathbb{R}^{m \times n}$, then rank(A) is the maximum number of linearly independent columns (or equivalently, rows)
- Properties:
 - $\blacktriangleright rank(A) \le \min\{m, \underline{n}\}$
 - $\blacktriangleright rank(A) = rank(A^T)$
 - $\blacktriangleright rank(AB) \le \min\{rank(A), rank(B)\}$
 - $rank(A+B) \le rank(A) + rank(B)$

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- A set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent if $\nexists\{\alpha_1, \ldots, \alpha_n\}$: $\sum_{i=1}^n \alpha_i x_i = 0.$
 - To understand this point think of each vector as a line segment pointing in a particular direction.
 - The note above says that if you place the vectors end-to-end, while maintaining their directions, that you can't arrange them in a way that they meet any of the other vectors, even if you're allowed to stretch them,
- ► Rank: A ∈ ℝ^{m×n}, then rank(A) is the maximum number of linearly independent columns (or equivalently, rows)
- Properties:
 - ▶ $rank(A) \le \min\{m, n\}$
 - $\blacktriangleright rank(A) = rank(A^T)$
 - $rank(AB) \le \min\{rank(A), rank(B)\}$
 - $rank(A+B) \le rank(A) + rank(B)$

Supplemental

Properties of Matrix Multiplication

Notes 02

- Preliminaries Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regressior

Terminology

References

Supplemental

• Associative: (AB)C = A(BC)

- Distributive: A(B+C) = AB + AC
- ▶ Non-commutative: $AB \neq BA$
- ▶ Block multiplication: If $A = [A_{ik}]$, $B = [B_{kj}]$, where A_{ik} 's and B_{kj} 's are matrix blocks, and the number of columns in A_{ik} is equal to the number of rows in B_{kj} , then $C = AB = [C_{ij}]$ where $C_{ij} = \sum_k A_{ik}B_{kj}$ **Example**: If $\overrightarrow{x} \in \mathbb{R}^n$ and $A = [\overrightarrow{a_1} | \overrightarrow{a_2} | \dots | \overrightarrow{a_n}] \in \mathbb{R}^{m \times n}$, $B = [\overrightarrow{b_1} | \overrightarrow{b_2} | \dots | \overrightarrow{b_p}] \in \mathbb{R}^{n \times p}$:

$$A \overrightarrow{x} = \sum_{i=1}^{n} x_i \overrightarrow{a_i}$$
$$AB = [A \overrightarrow{b_1} | A \overrightarrow{b_2} | \dots | A \overrightarrow{b_p}$$

Supplemental

Properties of Matrix Multiplication

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regressior
- Terminology
- References
- Supplemental

• Associative: (AB)C = A(BC)

- Distributive: A(B+C) = AB + AC
- ▶ Non-commutative: $AB \neq BA$
- ▶ Block multiplication: If $A = [A_{ik}]$, $B = [B_{kj}]$, where A_{ik} 's and B_{kj} 's are matrix blocks, and the number of columns in A_{ik} is equal to the number of rows in B_{kj} , then $C = AB = [C_{ij}]$ where $C_{ij} = \sum_k A_{ik}B_{kj}$ **Example**: If $\overrightarrow{x} \in \mathbb{R}^n$ and $A = [\overrightarrow{a_1} | \overrightarrow{a_2} | \dots | \overrightarrow{a_n}] \in \mathbb{R}^{m \times n}$, $B = [\overrightarrow{b_1} | \overrightarrow{b_2} | \dots | \overrightarrow{b_p}] \in \mathbb{R}^{n \times p}$:

$$A\overrightarrow{x} = \sum_{i=1}^{n} x_i \overrightarrow{a_i}$$
$$AB = [A\overrightarrow{b_1}| A\overrightarrow{b_2}| \dots |A\overrightarrow{b_p}]$$

Properties of Matrix Multiplication

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- Reference
- Supplemental

- Associative: (AB)C = A(BC)
- Distributive: A(B+C) = AB + AC
- Non-commutative: $AB \neq BA$
- ▶ Block multiplication: If $A = [A_{ik}]$, $B = [B_{kj}]$, where A_{ik} 's and B_{kj} 's are matrix blocks, and the number of columns in A_{ik} is equal to the number of rows in B_{kj} , then $C = AB = [C_{ij}]$ where $C_{ij} = \sum_k A_{ik}B_{kj}$ **Example**: If $\overrightarrow{x} \in \mathbb{R}^n$ and $A = [\overrightarrow{a_1} | \overrightarrow{a_2} | \dots | \overrightarrow{a_n}] \in \mathbb{R}^{m \times n}$, $B = [\overrightarrow{b_1} | \overrightarrow{b_2} | \dots | \overrightarrow{b_p}] \in \mathbb{R}^{n \times p}$:

$$A \overrightarrow{x} = \sum_{i=1}^{n} x_i \overrightarrow{a_i}$$
$$AB = [A\overrightarrow{b_1}| A\overrightarrow{b_2}| \dots |A\overrightarrow{b_p}|$$

Properties of Matrix Multiplication

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression

Terminology

References

Supplemental

- Associative: (AB)C = A(BC)
- Distributive: A(B+C) = AB + AC
- Non-commutative: $AB \neq BA$
- Block multiplication: If A = [A_{ik}], B = [B_{kj}], where A_{ik}'s and B_{kj}'s are matrix blocks, and the number of columns in A_{ik} is equal to the number of rows in B_{kj}, then C = AB = [C_{ij}] where C_{ij} = ∑_k A_{ik}B_{kj}
 Example: If *x* ∈ ℝⁿ and A = [*a*₁'| *a*₂'| ... | *a*_n] ∈ ℝ^{m×n}, B = [*b*₁'| *b*₂'| ... | *b*_p] ∈ ℝ^{n×p}:

$$A\overrightarrow{x} = \sum_{i=1}^{n} x_i \overrightarrow{a_i}$$
$$AB = [A\overrightarrow{b_1}| A\overrightarrow{b_2}| \dots | A\overrightarrow{b_p}]$$

Properties of Matrix Multiplication

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression

Terminology

References

Supplemental

- Associative: (AB)C = A(BC)
- Distributive: A(B+C) = AB + AC
- Non-commutative: $AB \neq BA$
- ▶ Block multiplication: If $A = [A_{ik}]$, $B = [B_{kj}]$, where A_{ik} 's and B_{kj} 's are matrix blocks, and the number of columns in A_{ik} is equal to the number of rows in B_{kj} , then $C = AB = [C_{ij}]$ where $C_{ij} = \sum_k A_{ik}B_{kj}$ **Example**: If $\overrightarrow{x} \in \mathbb{R}^n$ and $A = [\overrightarrow{a_1} | \overrightarrow{a_2} | \dots | \overrightarrow{a_n}] \in \mathbb{R}^{m \times n}$, $B = [\overrightarrow{b_1} | \overrightarrow{b_2} | \dots | \overrightarrow{b_p}] \in \mathbb{R}^{n \times p}$:

$$A \overrightarrow{x} = \sum_{i=1}^{n} x_i \overrightarrow{a_i}$$
$$AB = [A \overrightarrow{b_1} | A \overrightarrow{b_2} | \dots | A \overrightarrow{b_p}]$$

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology References

Supplemental

• Identity matrix: $I = I_n \in \mathbb{R}^{n \times n}$:

$$I_{ij} = \begin{cases} 1 & i=j, \\ 0 & \text{otherwise.} \end{cases}$$

$$\blacktriangleright \quad \forall A \in \mathbb{R}^{m \times n} \colon AI_n = I_m A = A$$

• Diagonal matrix: $D = diag(d_1, d_2, \ldots, d_n)$:

$$D_{ij} = \begin{cases} d_i & j=i, \\ 0 & \text{otherwise} \end{cases}$$

Symmetric matrices: A ∈ ℝ^{n×n} is symmetric if A = A^T.
 Orthogonal matrices: U ∈ ℝ^{n×n} is orthogonal if UU^T = I = U^T

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

Supplemental

• Identity matrix: $I = I_n \in \mathbb{R}^{n \times n}$:

$$I_{ij} = \begin{cases} 1 & i=j, \\ 0 & \text{otherwise.} \end{cases}$$

$$\blacktriangleright \quad \forall A \in \mathbb{R}^{m \times n} \colon AI_n = I_m A = A$$

• Diagonal matrix:
$$D = diag(d_1, d_2, \ldots, d_n)$$
:

$$D_{ij} = \begin{cases} d_i & j=i, \\ 0 & \text{otherwise.} \end{cases}$$

• Symmetric matrices: $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$.

 \blacktriangleright Orthogonal matrices: $U \in \mathbb{R}^{n \times n}$ is orthogonal if $UU^T = I = U^T U$

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

• Identity matrix: $I = I_n \in \mathbb{R}^{n \times n}$:

$$I_{ij} = \begin{cases} 1 & i=j, \\ 0 & \text{otherwise} \end{cases}$$

$$\blacktriangleright \quad \forall A \in \mathbb{R}^{m \times n} \colon AI_n = I_m A = A$$

• Diagonal matrix:
$$D = diag(d_1, d_2, \ldots, d_n)$$
:

$$D_{ij} = \begin{cases} d_i & j=i, \\ 0 & \text{otherwise.} \end{cases}$$

- Symmetric matrices: $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$.
- Orthogonal matrices: $U \in \mathbb{R}^{n \times n}$ is orthogonal if $UU^T = I = U^T U$

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology References

Supplemental

• Identity matrix: $I = I_n \in \mathbb{R}^{n \times n}$:

$$I_{ij} = \begin{cases} 1 & i=j, \\ 0 & \text{otherwise} \end{cases}$$

$$\blacktriangleright \quad \forall A \in \mathbb{R}^{m \times n} \colon AI_n = I_m A = A$$

• Diagonal matrix: $D = diag(d_1, d_2, \ldots, d_n)$:

$$D_{ij} = \begin{cases} d_i & j=i, \\ 0 & \text{otherwise.} \end{cases}$$

- Symmetric matrices: $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$.
- Orthogonal matrices: $U \in \mathbb{R}^{n \times n}$ is orthogonal if $UU^T = I = U^T U$

Notes 02

Preliminaries

Fitting Lines

Simple Linear Regression

Linear Algebra

Multiple Linear Regression

Terminology

References

Supplemental

A set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent if $\nexists\{\alpha_1, \ldots, \alpha_n\}$: $\sum_{i=1}^n \alpha_i x_i = 0.$

- To understand this point think of each vector as a line segment pointing in a particular direction.
- ► The note above says that if you place the vectors end-to-end, while maintaining their directions, that you can't arrange them in a way that they meet any of the other vectors, even if you're allowed to stretch them,

▶ Rank: $A \in \mathbb{R}^{m \times n}$, then rank(A) is the maximum number of linearly independent columns (or equivalently, rows)

- Properties:
 - $\blacktriangleright \ rank(A) \le \min\{m, n\}$
 - $\blacktriangleright rank(A) = rank(A^T)$
 - $rank(AB) \le min\{rank(A), rank(B)\}$
 - $\blacktriangleright rank(A+B) \le rank(A) + rank(B)$

Econometrics

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- A set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent if $\nexists\{\alpha_1, \ldots, \alpha_n\}$: $\sum_{i=1}^n \alpha_i x_i = 0.$
 - To understand this point think of each vector as a line segment pointing in a particular direction.
 - The note above says that if you place the vectors end-to-end, while maintaining their directions, that you can't arrange them in a way that they meet any of the other vectors, even if you're allowed to stretch them,
- ▶ Rank: $A \in \mathbb{R}^{m \times n}$, then rank(A) is the maximum number of linearly independent columns (or equivalently, rows)
- Properties:
 - $\blacktriangleright \ rank(A) \le \min\{m, n\}$
 - $\blacktriangleright \ rank(A) = rank(A^T)$
 - $\blacktriangleright rank(AB) \le \min\{rank(A), rank(B)\}$
 - $rank(A+B) \le rank(A) + rank(B)$

Econometrics

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regressior
- Terminology
- References
- Supplemental

- A set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent if $\nexists \{\alpha_1, \ldots, \alpha_n\}$: $\sum_{i=1}^n \alpha_i x_i = 0.$
 - To understand this point think of each vector as a line segment pointing in a particular direction.
 - The note above says that if you place the vectors end-to-end, while maintaining their directions, that you can't arrange them in a way that they meet any of the other vectors, even if you're allowed to stretch them,
- ► Rank: A ∈ ℝ^{m×n}, then rank(A) is the maximum number of linearly independent columns (or equivalently, rows)
- Properties:
 - $\blacktriangleright \ rank(A) \le \min\{m, n\}$
 - $\blacktriangleright rank(A) = rank(A^T)$
 - $\blacktriangleright rank(AB) \le \min\{rank(A), rank(B)\}$
 - $rank(A+B) \le rank(A) + rank(B)$

Econometrics

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- A set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent if $\nexists \{\alpha_1, \ldots, \alpha_n\}$: $\sum_{i=1}^n \alpha_i x_i = 0.$
 - To understand this point think of each vector as a line segment pointing in a particular direction.
 - The note above says that if you place the vectors end-to-end, while maintaining their directions, that you can't arrange them in a way that they meet any of the other vectors, even if you're allowed to stretch them,
- ▶ Rank: $A \in \mathbb{R}^{m \times n}$, then rank(A) is the maximum number of linearly independent columns (or equivalently, rows)
- Properties:
 - $\blacktriangleright rank(A) \le \min\{m, \underline{n}\}$
 - $\blacktriangleright rank(A) = rank(A^T)$
 - $\blacktriangleright rank(AB) \le \min\{rank(A), rank(B)\}$
 - $rank(A+B) \le rank(A) + rank(B)$

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- A set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent if $\nexists\{\alpha_1, \ldots, \alpha_n\}$: $\sum_{i=1}^n \alpha_i x_i = 0.$
 - To understand this point think of each vector as a line segment pointing in a particular direction.
 - The note above says that if you place the vectors end-to-end, while maintaining their directions, that you can't arrange them in a way that they meet any of the other vectors, even if you're allowed to stretch them,
- ► Rank: A ∈ ℝ^{m×n}, then rank(A) is the maximum number of linearly independent columns (or equivalently, rows)
- Properties:
 - ▶ $rank(A) \le \min\{m, \underline{n}\}$
 - $\blacktriangleright rank(A) = rank(A^T)$
 - $rank(AB) \le \min\{rank(A), rank(B)\}$
 - $rank(A+B) \le rank(A) + rank(B)$

Notes 02

Preliminaries

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- ▶ Span: $span(\{x_1, \ldots, x_n\}) = \{\sum_{i=1}^n \alpha_i x_i | \alpha_i \in \mathbb{R}\}$
- ▶ Projection: $Proj(y; \{x_i\}_{1 \le i \le n}) = argmin_{v \in span(\{x_i\}_{1 \le i \le n})} \{||y v||_2\}$
- ▶ Range: $A \in \mathbb{R}^{m \times n}$, then $\mathcal{R}(A) = \{Ax | x \in R^n\}$ is the span of the columns of A
- $\blacktriangleright Proj(y, A) = A(A^T A)^{-1} A^T y$
- ▶ Nullspace: $null(A) = \{x \in \mathbb{R}^n | Ax = 0\}$

Notes 02

Preliminaries

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- Span: $span(\{x_1,\ldots,x_n\}) = \{\sum_{i=1}^n \alpha_i x_i | \alpha_i \in \mathbb{R}\}$
- ▶ Projection: $Proj(y; \{x_i\}_{1 \le i \le n}) = argmin_{v \in span(\{x_i\}_{1 \le i \le n})} \{||y v||_2\}$
- ▶ Range: $A \in \mathbb{R}^{m \times n}$, then $\mathcal{R}(A) = \{Ax | x \in R^n\}$ is the span of the columns of A
- $\blacktriangleright \ Proj(y,A) = A(A^TA)^{-1}A^Ty$
- ▶ Nullspace: $null(A) = \{x \in \mathbb{R}^n | Ax = 0\}$

Notes 02

Preliminaries

Fitting Lines

- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression

Terminology

References

Supplemental

- Span: $span(\{x_1,\ldots,x_n\}) = \{\sum_{i=1}^n \alpha_i x_i | \alpha_i \in \mathbb{R}\}$
- ▶ Projection: $Proj(y; \{x_i\}_{1 \le i \le n}) = argmin_{v \in span(\{x_i\}_{1 \le i \le n})} \{||y v||_2\}$
- ▶ Range: $A \in \mathbb{R}^{m \times n}$, then $\mathcal{R}(A) = \{Ax | x \in R^n\}$ is the span of the columns of A
- $\blacktriangleright Proj(y, A) = A(A^T A)^{-1} A^T y$
- ▶ Nullspace: $null(A) = \{x \in \mathbb{R}^n | Ax = 0\}$

Notes 02

Preliminaries

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- Span: $span(\{x_1,\ldots,x_n\}) = \{\sum_{i=1}^n \alpha_i x_i | \alpha_i \in \mathbb{R}\}$
- ▶ Projection: $Proj(y; \{x_i\}_{1 \le i \le n}) = argmin_{v \in span(\{x_i\}_{1 \le i \le n})} \{||y v||_2\}$
- ▶ Range: $A \in \mathbb{R}^{m \times n}$, then $\mathcal{R}(A) = \{Ax | x \in R^n\}$ is the span of the columns of A
- $\blacktriangleright \ Proj(y,A) = A(A^TA)^{-1}A^Ty$
- ▶ Nullspace: $null(A) = \{x \in \mathbb{R}^n | Ax = 0\}$

Notes 02

Preliminaries

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- Span: $span(\{x_1,\ldots,x_n\}) = \{\sum_{i=1}^n \alpha_i x_i | \alpha_i \in \mathbb{R}\}$
- ▶ Projection: $Proj(y; \{x_i\}_{1 \le i \le n}) = argmin_{v \in span(\{x_i\}_{1 \le i \le n})} \{||y v||_2\}$
- ▶ Range: $A \in \mathbb{R}^{m \times n}$, then $\mathcal{R}(A) = \{Ax | x \in R^n\}$ is the span of the columns of A
- $\blacktriangleright \ Proj(y,A) = A(A^TA)^{-1}A^Ty$
- ▶ Nullspace: $null(A) = \{x \in \mathbb{R}^n | Ax = 0\}$

Determinant

Notes 02

Preliminaries

Fitting Lines

- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- $A \in \mathbb{R}^{n \times n}$, a_1, \ldots, a_n the rows of A, then det(A) is the volume of $S = \{\sum_{i=1}^n \alpha_i a_i | 0 \le \alpha_i \le 1\}.$
- Properties:
 - det(I) = 1
 - $\blacktriangleright det(\lambda A) = \lambda det(A)$
 - $\blacktriangleright det(A^T) = det(A)$
 - $\blacktriangleright \ det(AB) = det(A)det(B)$
 - $det(A) \neq 0$ if and only if A is invertible.
 - If A invertible, then $det(A^{-1}) = det(A)^{-1}$

Supplemental

Quadratic Forms and Positive Semidefinite Matrices

Notes 02

Preliminaries

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

• $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$, $x^T A x$ is called a guadratic form:

$$x^T A x = \sum_{1 \le i,j \le n} A_{ij} x_i x_j$$

- A is positive definite if $\forall x \in \mathbb{R}^n : x^T A x > 0$
- $\blacktriangleright A$ is positive semidefinite if $\forall \, x \in \mathbb{R}^n : x^T A x \geq 0$
- A is negative definite if $\forall x \in \mathbb{R}^n : x^T A x < 0$
- $\blacktriangleright~A$ is negative semidefinite if $\forall\,x\in\mathbb{R}^n:x^TAx\leq 0$

Supplemental

Quadratic Forms and Positive Semidefinite Matrices

Notes 02

Preliminaries

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

• $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$, $x^T A x$ is called a quadratic form:

$$x^T A x = \sum_{1 \le i,j \le n} A_{ij} x_i x_j$$

- $\blacktriangleright A$ is positive definite if $\forall \, x \in \mathbb{R}^n : x^T A x > 0$
- $\blacktriangleright A$ is positive semidefinite if $\forall \, x \in \mathbb{R}^n : x^T A x \geq 0$
- A is negative definite if $\forall x \in \mathbb{R}^n : x^T A x < 0$
- $\blacktriangleright~A$ is negative semidefinite if $\forall\,x\in\mathbb{R}^n:x^TAx\leq 0$

Eigenvalues and Eigenvectors

Notes 02

Preliminaries

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

A ∈ ℝ^{n×n}, λ ∈ C is an eigenvalue of A with the corresponding eigenvector x ∈ Cⁿ (x ≠ 0) if:

$$Ax = \lambda x$$

- eigenvalues: the *n* possibly complex roots of the polynomial equation $det(A \lambda I) = 0$, and denoted as $\lambda_1, \ldots, \lambda_n$
- Properties:
 - $tr(A) = \sum_{i=1}^{n} \lambda_i$ • $det(A) = \prod_{i=1}^{n} \lambda_i$
 - $\operatorname{rank}(A) = \prod_{i=1}^{i} \lambda_i$ $\operatorname{rank}(A) = |\{1 \le i \le n | \lambda_i \ne 0\}|$

Matrix Eigendecomposition

Notes 02

Preliminaries

Fitting Lines

- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression

Terminology

References

Supplemental

- $A \in \mathbb{R}^{n \times n}$, $\lambda_1, \ldots, \lambda_n$ the eigenvalues, and x_1, \ldots, x_n the eigenvectors. $X = [x_1|x_2| \ldots |x_n]$, $\Lambda = diag(\lambda_1, \ldots, \lambda_n)$, then $AX = X\Lambda$.
- A called diagonalizable if X invertible: $A = X\Lambda X^{-1}$

.

▶ If A symmetric, then all eigenvalues real, and X orthogonal (hence denoted by $U = [u_1|u_2|...|u_n]$):

$$A = U\Lambda U^T = \sum_{i=1}^n \lambda_i u_i u_i^T$$

A special case of Singular Value Decomposition

Supplemental

Optimization

Notes 02

- Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology

References

Supplemental

• A set of points S is convex if, for any $x, y \in S$ and for any $0 \le \theta \le 1$,

$$\theta x + (1-\theta)y \in S$$

 \blacktriangleright A function $f:S\to \mathbb{R}$ is convex if its domain S is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in S$, $0 \le \theta \le 1$.

• A function $f: S \to \mathbb{R}$ is submodular if for any subset $A \subseteq B$,

 $f(A \cup \{x\}) - f(A) \ge f(B \cup \{x\}) - f(B)$

 Convex functions can easily be minimized. Submodular functions allow approximate discrete optimization.

Proofs

Notes 02 Preliminaries

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

Induction:

- 1. Show result on base case, associated with $n = k_0$
- 2. Assume result true for $n \leq i$. Prove result for n = i + 1
- 3. Conclude result true for all $n \ge k_0$

Example: In a complete graph, $E = \frac{1}{2}N(N-1)$

- Contradiction (reductio ad absurdum):
 - 1. Assume result is false
 - 2. Follow implications in a deductive manner, until a contradiction is reached
 - 3. Conclude initial assumption was wrong, hence result true

Example: Strongly connected components partition nodes

Graph theory

- Notes 02 Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- Definitions: vertex/node, edge/link, loop/cycle, degree, path, neighbor, tree, clique,...
- Random graph (Erdos-Renyi): Each possible edge is present with some probability p
- (Strongly) connected component: subset of nodes that can all reach each other
- Diameter: longest minimum distance between two nodes
- Bridge: edge connecting two otherwise disjoint connected components

Basic algorithms

Notes 02 Preliminaries

- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression

Terminology

References

Supplemental

- ► BFS: explore by "layers"
- ▶ DFS: go as far as possible, then backtrack
- Greedy: maximize goal at each step
- ▶ Binary search: on ordered set, discard half of the elements at each step

Complexity

- Notes 02 Preliminaries
- Fitting Lines
- Simple Linear Regression
- Linear Algebra
- Multiple Linear Regression
- Terminology
- References
- Supplemental

- ► Number of operations as a function of the problem parameters.
- Examples
 - 1. Find shortest path between two nodes:
 - > DFS: very bad idea, could end up with the whole graph as a single path
 - BFS from origin: good idea
 - BFS from origin and destination: even better!
 - 2. Given a node, find its connected component
 - Loop over nodes: bad idea, needs N path searches
 - BFS or DFS: good idea