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Preliminaries

In God we trust, all others bring data.

–William Edwards Deming (1900-1993)

Notes 02 (NEIU Spring 2015, Section 1) Econometrics Updated: January 29, 2015 2 / 39



Econometrics

Notes 02

Preliminaries

Fitting Lines

Simple Linear
Regression

Linear Algebra

Multiple
Linear
Regression

Terminology

References

Supplemental

Fitting Lines

I This is data from the California
public school system.

I The y-axis measures average test
scores in classrooms for the range
of student teacher ratios listed on
the x-axis.

I What do you think explains this
figure?

e
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Simple Linear Regression

Simple Linear Regression

I We quantify the linear relationship between x and y by finding the equation of
the line that “best” fits the data.

I That equation will be written in the form

ŷ = a+ bx.

I The variable y represents the value that was actually observed.

I The variable ŷ represents the value of y that is predicted by the model.
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Simple Linear Regression

Simple Linear Regression

I Many possible lines will look pretty good.

I To choose the best one, we need to measure how well a line fits the data.

I How do we measure how well a line fits the data?
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Linear Algebra

I Suppose I have data on longevity, education, income, and average temperature
in the region where subjects live.

I How might I organize this information?

I How can I test whether the data agree with my intuition regarding these
values?
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Linear Algebra

I The following slides represent roughly 4 weeks of linear algebra compressed
into one lecture. To learn more see Hefferon’s excellent and free text.

I You don’t need to memorize any definitions or operations. Just try to
experience them in class.

I The important thing is to take away is the relationship between the
observations in the dataframe:

y11 x11 x12 . . . x1m
y21 x21 x22 . . . x2m

...
...

...
...

yn1 xn1 xn2 . . . xnm


and the data arranged into a into a linear model:

y11
y21

...
yn1

 =


1 x11 x12 . . . x1m
1 x21 x22 . . . x2m
...

...
...

...
1 xn1 xn2 . . . xnm

 ∗


β0
β1
...
βm


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Linear Algebra

Matrices

I Matrix: A rectangular array of numbers, e.g., A ∈ Rn×m:

A =


a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

...
an1 an2 . . . anm


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Linear Algebra

Vectors

I Vector: A matrix consisting of only one column or one row, e.g., x ∈ Rn

x =


x1
x2
...
xn


I Optionally, underset numbers tell us the number of rows in a matrix followed

by its number of columns. e.g. A
m,n
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Linear Algebra

Matrix and Vector Addition

I Matrix addition for a 2 by 2 matrices:

A
2,2

+ B
2,2

=

(
a11 a12
a21 a22

)
+

(
b11 b12
b21 b22

)
=

(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
(1)

=

(
1 2
3 4

)
+

(
5 6
7 8

)
=

(
6 8
10 12

)
(2)

I Now you try:

C =

(
9 1
2 3

)
, D =

(
4 5
6 7

)
→ C +D =?
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Linear Algebra

Matrix and Vector Addition

I Vector addition for vectors of length 3:

x
3,1

+ y
3,1

=

 x1
x2
x3

+

 y1
y2
y3

 =

 x1 + y1
x2 + y2
x3 + y3

 (3)

=

 1
2
3

+

 4
5
6

 =

 5
7
9

 (4)

I Now you try:

v =

 9
1
2

 , w =

 3
4
5

→ v + w =?
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Linear Algebra

Scalar Multiplication

I A matrix with one row and one column is called a scalar. This is the same
thing as the normal definition of a number that we’re used to.

I When a matrix is multiplied by a scalar, every number in the array is
multiplied by the scalar. Suppose c is a scalar→

c ∗A = c ∗
(
a11 a12
a21 a22

)
=

(
c ∗ a11 c ∗ a12
c ∗ a21 c ∗ a22

)
I For example:

5 ∗A = c ∗
(

1 2
3 4

)
=

(
5 10
15 20

)
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Matrix Multiplication

I If A
m,n
∈ Rm×n, B ∈ Rn×p, C = AB, then C ∈ Rm×p: Cij =

∑n
k=1AikBkj .

I Special cases: Matrix-vector product, inner product of two vectors. e.g., with
x, y ∈ Rn:

xT y =

n∑
i=1

xiyi ∈ R

I The product of two vectors is a scalar and equal to the length of the
hypotenuse of the triangle formed by placing the vectors end-to-end.

v =

 9
1
2

 , w =

 3
4
5

→ vTw = (9)(3) + (1)(4) + (2)(5) = 41
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Linear Algebra

Operators and Properties

Transposing a matrix swaps the row and column coordinates of each element of a
matrix.

I Transpose: A ∈ Rm×n, then AT ∈ Rn×m: (AT )ij = Aji

I Properties:
I (AT )T = A
I (AB)T = BTAT

I (A+B)T = AT +BT

The trace is just the sum of the diagonal of a matrix.

I Trace: A ∈ Rn×n, then: tr(A) =
∑n

i=1Aii

I Properties:
I tr(A) = tr(AT )
I tr(A+B) = tr(A) + tr(B)
I tr(λA) = λtr(A)
I If AB is a square matrix, tr(AB) = tr(BA)
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Properties of Matrix Multiplication

I Associative: (AB)C = A(BC)

I Distributive: A(B + C) = AB +AC

I Non-commutative: AB 6= BA
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Linear Algebra

Special types of matrices

I Identity matrix: I = In ∈ Rn×n:

Iij =

{
1 i=j,

0 otherwise.

I ∀A ∈ Rm×n: AIn = ImA = A

I Symmetric matrices: A ∈ Rn×n is symmetric if A = AT .
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I At this point, the arrangement of the data into a model should be clearer to
you.

I Begin with the data: n observations, 1 response, and m variables.
y11 x11 x12 . . . x1m
y21 x21 x22 . . . x2m

...
...

...
...

yn1 xn1 xn2 . . . xnm


I Next it’s arranged into a into a model:

y11
y21

...
yn1

 =


1 x11 x12 . . . x1m
1 x21 x22 . . . x2m
...

...
...

...
1 xn1 xn2 . . . xnm

 ∗


β0
β1
...
βm


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I After the data is arranged into a into a model:
y11
y21

...
yn1

 =


1 x11 x12 . . . x1m
1 x21 x22 . . . x2m
...

...
...

...
1 xn1 xn2 . . . xnm

 ∗


β0
β1
...
βm

 (5)

Y
n,1

= X
n,m

B
m,1

(6)

I Perform matrix multiplication and note that every entry in the first column of
the X matrix is multiplied by β0, every entry in the second column (i.e. those
that correspond to the first x variable) by β1, and so on:

y11
y21

...
yn1

 =


β0 β1x11 . . . βmx1m
β0 β1x21 . . . βmx2m
...

...
...

β0 β1xn1 . . . βmxnm


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Matrix Inversion (Division)

Let A =

(
4 3
3 2

)
and A−1 =

(
−2 3
3 −4

)
and consider AA−1

AA−1 =

(
4 3
3 2

)(
−2 3
3 −4

)
=

(
1 0
0 1

)
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Linear Algebra

Matrix Inversion (Division)

I If A ∈ Rn×n, then the inverse of A, denoted A−1 is the matrix that:
AA−1 = A−1A = I. Recall that IA = A for all conformable A.

I Properties:
I (A−1)−1 = A
I (AB)−1 = B−1A−1

I (A−1)T = (AT )−1

I There is a problem in solving Y = XB. We can’t simply multiply the inverse
to both sides (X−1Y = X−1XB) to get B.

I Can anyone tell me why?For bonus points? There is a hint on this page.
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Multiple Linear Regression

Multiple Linear Regression

I The problem is that X is not a square matrix. This means that it does not
have an equal number of rows and columns, so it cannot be inverted.

I The solution is a simple trick:
I When you multiply a matrix by its transpose, the result is square.
I So we multiply both sides of the equation by the transpose of X before inverting.

XTY = XTXB (7)

(XTX)−1XTY = (XTX)−1(XTX)B (8)

(XTX)−1XTY = IB = B (9)

I The best fitting fitting hyper-plane (or simply line, in the case of one
x-variable, i.e. m=1, simple linear regression) is based on the parameters
estimated using only X and Y of this equation: B̂ = (XTX)−1XTY.

I Now you’ve learned the most ubiquitous technique in academic research.
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Terminology

Terminology 01

1. Dependent variable (Y–variable) – In an econometric model, this variable
appears to the left of the equality sign. It is affected by the independent
variable.

2. Econometric model (structural equation or regression equation) – A
mathematical expression that captures the essence of the cause – and–effect
relationship between two variables.

3. Error term (residual or disturbance) – This variable is attached to the end
of an econometric model. It captures the difference between the observed
value of the Y–variable and the value predicted by the econometric model.

4. Independent variable (X–variable) – In an econometric model, this variable
appears to the right of the equality sign. It is affects by the dependent variable.

5. Normal equation – An equation that comes up in the derivation of the
formulas for the ordinary least–squares estimators.
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3. Error term (residual or disturbance) – This variable is attached to the end
of an econometric model. It captures the difference between the observed
value of the Y–variable and the value predicted by the econometric model.

4. Independent variable (X–variable) – In an econometric model, this variable
appears to the right of the equality sign. It is affects by the dependent variable.

5. Normal equation – An equation that comes up in the derivation of the
formulas for the ordinary least–squares estimators.
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1. Ordinary least–squares – A technique for estimating the structural
parameters of an econometric model. This technique minimizes Σe2i (

2. Population regression function – An econometric model estimated with
error–free data that includes the entire population of interest.

3. Sample regression function – An econometric model estimated from sample
data.

4. Stochastic variable – A variable that can take on different values depending
on the sample data. β̂0 and β̂1 are stochastic variables, as are the ei’s.

5. Structural parameter – In an econometric model,b̂eta0 and β̂1 are the
structural parameters.
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I A Guide to Basic Econometric Techniques by Elia Kacapyr

I To learn more about linear algebra see Hefferon’s excellent and free
text.

I Anonymous MIT notes on linear algebra (add link here).

Notes 02 (NEIU Spring 2015, Section 1) Econometrics Updated: January 29, 2015 25 / 39

http://joshua.smcvt.edu/linearalgebra
http://joshua.smcvt.edu/linearalgebra


Econometrics

Notes 02

Preliminaries

Fitting Lines

Simple Linear
Regression

Linear Algebra

Multiple
Linear
Regression

Terminology

References

Supplemental

Supplemental

Linear Independence and Rank

I A set of vectors {x1, . . . , xn} is linearly independent if @{α1, . . . , αn}:∑n
i=1 αixi = 0.
I To understand this point think of each vector as a line segment pointing in a

particular direction.
I The note above says that if you place the vectors end-to-end, while maintaining

their directions, that you can’t arrange them in a way that they meet any of the
other vectors, even if you’re allowed to stretch them,

I Rank: A ∈ Rm×n, then rank(A) is the maximum number of linearly
independent columns (or equivalently, rows)

I Properties:
I rank(A) ≤ min{m,n}
I rank(A) = rank(AT )
I rank(AB) ≤ min{rank(A), rank(B)}
I rank(A+B) ≤ rank(A) + rank(B)
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Properties of Matrix Multiplication

I Associative: (AB)C = A(BC)

I Distributive: A(B + C) = AB +AC

I Non-commutative: AB 6= BA

I Block multiplication: If A = [Aik], B = [Bkj ], where Aik’s and Bkj ’s are
matrix blocks, and the number of columns in Aik is equal to the number of
rows in Bkj , then C = AB = [Cij ] where Cij =

∑
k AikBkj

Example: If −→x ∈ Rn and A = [−→a1| −→a2| . . . | −→an] ∈ Rm×n,

B = [
−→
b1 |
−→
b2 | . . . |

−→
bp ] ∈ Rn×p:

A−→x =
n∑

i=1

xi
−→ai

AB = [A
−→
b1 |A

−→
b2 | . . . |A

−→
bp ]
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Special types of matrices

I Identity matrix: I = In ∈ Rn×n:

Iij =

{
1 i=j,

0 otherwise.

I ∀A ∈ Rm×n: AIn = ImA = A

I Diagonal matrix: D = diag(d1, d2, . . . , dn):

Dij =

{
di j=i,

0 otherwise.

I Symmetric matrices: A ∈ Rn×n is symmetric if A = AT .

I Orthogonal matrices: U ∈ Rn×n is orthogonal if UUT = I = UTU
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Linear Independence and Rank

I A set of vectors {x1, . . . , xn} is linearly independent if @{α1, . . . , αn}:∑n
i=1 αixi = 0.
I To understand this point think of each vector as a line segment pointing in a

particular direction.
I The note above says that if you place the vectors end-to-end, while maintaining

their directions, that you can’t arrange them in a way that they meet any of the
other vectors, even if you’re allowed to stretch them,

I Rank: A ∈ Rm×n, then rank(A) is the maximum number of linearly
independent columns (or equivalently, rows)

I Properties:
I rank(A) ≤ min{m,n}
I rank(A) = rank(AT )
I rank(AB) ≤ min{rank(A), rank(B)}
I rank(A+B) ≤ rank(A) + rank(B)
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Range and Nullspace of a Matrix

I Span: span({x1, . . . , xn}) = {
∑n

i=1 αixi|αi ∈ R}
I Projection: Proj(y; {xi}1≤i≤n) = argminv∈span({xi}1≤i≤n){||y − v||2}
I Range: A ∈ Rm×n, then R(A) = {Ax|x ∈ Rn} is the span of the columns of
A

I Proj(y,A) = A(ATA)−1AT y

I Nullspace: null(A) = {x ∈ Rn|Ax = 0}
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Determinant

I A ∈ Rn×n, a1, . . . , an the rows of A, then det(A) is the volume of
S = {

∑n
i=1 αiai| 0 ≤ αi ≤ 1}.

I Properties:
I det(I) = 1
I det(λA) = λdet(A)
I det(AT ) = det(A)
I det(AB) = det(A)det(B)
I det(A) 6= 0 if and only if A is invertible.
I If A invertible, then det(A−1) = det(A)−1
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Quadratic Forms and Positive Semidefinite Matrices

I A ∈ Rn×n, x ∈ Rn, xTAx is called a quadratic form:

xTAx =
∑

1≤i,j≤n
Aijxixj

I A is positive definite if ∀x ∈ Rn : xTAx > 0

I A is positive semidefinite if ∀x ∈ Rn : xTAx ≥ 0

I A is negative definite if ∀x ∈ Rn : xTAx < 0

I A is negative semidefinite if ∀x ∈ Rn : xTAx ≤ 0
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Eigenvalues and Eigenvectors

I A ∈ Rn×n, λ ∈ C is an eigenvalue of A with the corresponding eigenvector
x ∈ Cn (x 6= 0) if:

Ax = λx

I eigenvalues: the n possibly complex roots of the polynomial equation
det(A− λI) = 0, and denoted as λ1, . . . , λn

I Properties:
I tr(A) =

∑n
i=1 λi

I det(A) =
∏n

i=1 λi
I rank(A) = |{1 ≤ i ≤ n|λi 6= 0}|
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Matrix Eigendecomposition

I A ∈ Rn×n, λ1, . . . , λn the eigenvalues, and x1, . . . , xn the eigenvectors.
X = [x1|x2| . . . |xn], Λ = diag(λ1, . . . , λn), then AX = XΛ.

I A called diagonalizable if X invertible: A = XΛX−1

I If A symmetric, then all eigenvalues real, and X orthogonal (hence denoted by
U = [u1|u2| . . . |un]):

A = UΛUT =

n∑
i=1

λiuiu
T
i

I A special case of Singular Value Decomposition
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Optimization

I A set of points S is convex if, for any x, y ∈ S and for any 0 ≤ θ ≤ 1,

θx+ (1− θ)y ∈ S

I A function f : S → R is convex if its domain S is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ S, 0 ≤ θ ≤ 1.

I A function f : S → R is submodular if for any subset A ⊆ B,

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B)

I Convex functions can easily be minimized. Submodular functions allow
approximate discrete optimization.
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Proofs

I Induction:

1. Show result on base case, associated with n = k0
2. Assume result true for n ≤ i. Prove result for n = i+ 1
3. Conclude result true for all n ≥ k0

Example: In a complete graph, E = 1
2N(N − 1)

I Contradiction (reductio ad absurdum):

1. Assume result is false
2. Follow implications in a deductive manner, until a contradiction is reached
3. Conclude initial assumption was wrong, hence result true

Example: Strongly connected components partition nodes
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Graph theory

I Definitions: vertex/node, edge/link, loop/cycle, degree, path, neighbor, tree,
clique,. . .

I Random graph (Erdos-Renyi): Each possible edge is present with some
probability p

I (Strongly) connected component: subset of nodes that can all reach each
other

I Diameter: longest minimum distance between two nodes

I Bridge: edge connecting two otherwise disjoint connected components
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Basic algorithms

I BFS: explore by “layers”

I DFS: go as far as possible, then backtrack

I Greedy: maximize goal at each step

I Binary search: on ordered set, discard half of the elements at each step
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Complexity

I Number of operations as a function of the problem parameters.
I Examples

1. Find shortest path between two nodes:
I DFS: very bad idea, could end up with the whole graph as a single path
I BFS from origin: good idea
I BFS from origin and destination: even better!

2. Given a node, find its connected component
I Loop over nodes: bad idea, needs N path searches
I BFS or DFS: good idea
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